Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731752

RESUMO

All over the world, especially in Western societies, table salt intake that is inordinately higher than the acceptable level has been observed. An excess of Na in the human diet, mostly from processed foods, is becoming the "number one killer", leading to increased blood pressure. Therefore, the food industry is faced with a need to reduce Na in human nutrition in an effort to raise public health protection to a higher level. In this study, a commercially available combination of Na/K salts (COMB) at different concentrations was used as a NaCl substitute in the production of a modified, healthier, Na-reduced cheese. Samples of the modified low-Na white soft-brined cheese (WSBC) were produced by adding four different concentrations of COMB to production lots PL-1 to PL-4, and the control (CON) samples were prepared by salting with the usual, non-reduced concentration of NaCl. The effects of NaCl replacement on the physical-chemical parameters, major- and micro-elements, and microstructural and sensory properties of the WSBC were investigated. The obtained results indicated that there was no significant influence on the ash content, pH, and aw. The Na and K levels differed among treatments (p < 0.001). The lowest Na level in this study was recorded in PL-4 (only COMB was added) and was 334.80 ± 24.60 mg/100 g. According to the Na content, WSBC PL4 can be labeled with the nutrient claim "reduced amount of Na". A significant difference (p < 0.05) was noticed in overall acceptance between the CON and PL-4, with no statistically significant difference found amongst other WSBC production lots. The replacement of NaCl resulted in a slightly greater firmness of the WSBC. The results confirm the possibility of producing low-Na WSBC when optimal amounts of a suitable mineral salt are used as a substitute for NaCl, thus reducing the risk of high Na intake in the human body through the consumption of evaluated cheese.

2.
Plants (Basel) ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765400

RESUMO

The goal of the present research was to screen the antimicrobial activity of an ethanolic extract of Kitaibelia vitifolia against 30 multidrug-resistant (MDR) bacterial strains isolated from healthcare-associated infections. Minimum inhibitory concentrations (MICs) of the samples against the tested bacteria were determined using the microdilution method. MDR bacterial strains were characterized using standard biochemical tests and the commercial identification systems API 20 NE and API 20 E as: Klebsiella spp. (18 isolates-I); methicillin-resistant Staphylococcus aureus (MRSA)-3; Acinetobacter spp.-3; Pseudomonas aeruginosa-5; vancomycin-resistant Enterococcus (VRE)-1. The sensitivity of isolated bacterial strains was determined using the disc diffusion method against 25 commonly used antibiotics. The highest level of sensitivity to K. vitifolia extract was confirmed in 88.89% of Klebsiella spp. isolates, E. coli ATCC 25922, two strains of MRSA (1726, 1063), Acinetobacter spp. strain 1578, and VRE strain 30, like Enterococcus faecalis ATCC 29212 (MIC =< 2.44 µg/mL). The lowest sensitivity was exhibited by 75.00% of Acinetobacter spp. (strains 1577 and 6401), where the highest values for MICs were noted (1250 µg/mL). The results indicate that the extract of K. vitifolia could be a possible source for creating new, efficient, and effective natural medicines for combat against MDR strains of bacteria.

3.
Foods ; 12(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37297346

RESUMO

The aim of this research was to examine the chemical properties of freshly squeezed wild garlic extract (FSWGE) and its use as an additive in burgers (BU). Technological and sensory properties of such fortified burgers (BU) were determined. LC-MS/MS analyses identified thirty-eight volatile BAC. Allicin prevalence (11.375 mg/mL) is the key parameter determining the amount of FSWGE added in raw BU (PS-I 1.32 mL/kg, PS-II 4.40 mL/kg, and PS-III 8.79 mL/kg). Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) values of the FSWGE and evaporated FSWGE (EWGE) were determined against the six microorganisms using a microdilution method. The data indicated that using FSWGE can result in a reduced risk of Serratia marcescens (MIC = 50 mg/mL; MBC = 60 mg/mL), Listeria monocytogenes (MIC = MBC = 90 mg/mL), Escherichia coli and Staphylococcus aureus (MIC = 90 mg/mL; MBC ≥ 100 mg/mL), and Salmonella enteritidis and Enterococcus faecium (MIC = 100 mg/mL; MBC > 100 mg/mL) in BU. Changes in antioxidant (AOX) capacity were followed during cold storage (up to 10 days) and freezing (90 days). It was shown that PS-III had the highest level of AOX capacity during the entire period of cold storage, revealing 8.79 mL FSWGE/kg BU as the most suitable effective concentration. Adding FSWGE did not negatively affect the technological and physico-chemical properties during both cold and freeze storage. Regarding sensory evaluation, modified BU received mostly higher scores compared to control. The results of this study have demonstrated the great potential of wild garlic extract usage in the creation of safe products with prolonged shelf life.

4.
Meat Sci ; 97(4): 459-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24769144

RESUMO

Fermented dry sausages (FDS) without nitrite added, fortified with bioactive phenol and flavonoid compounds originating from the ethanol extract of Kitaibelia vitifolia were food matrix for investigation of its antioxidant and antimicrobial potency. These activities were researched in order to improve the sausages' shelf-life, safety, and provide health benefits to consumers as well. The oxidative stability of the FDS, containing two different levels of natural preservative, was evaluated using five different contemporary methods for antioxidative activity. The activity was tested on the 20th day of the refrigerated storage. Minimum inhibitory concentrations of the sausage extract were determined against six microorganisms, using a micro dilution method. Determined optimal effective concentration of dissolved K. vitifolia extract (12.5 g/kg of meat dough) revealed strong antioxidant activity, and moderate antimicrobial activity against Escherichia coli (minimum inhibitory concentrations=15.625 µg/mL). The modified sausages had typical chemical-physical characteristics of FDS, controlled on 0, 13, 26 d of ripening and 20, 40 and 60 d of storage.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Malvaceae/química , Produtos da Carne , Extratos Vegetais/farmacologia , Animais , Dieta , Fermentação , Flavonoides/farmacologia , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Humanos , Produtos da Carne/microbiologia , Testes de Sensibilidade Microbiana , Nitritos , Oxirredução , Fenóis/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...